Yahoo Answers is shutting down on 4 May 2021 (Eastern Time) and the Yahoo Answers website is now in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

help with some contour integrals?

1. Using Jordan's Inequality,

show that the integral from 0 to infinity of (x^3)*sinx/(x^4+1) dx = (pi/2)*exp(-1/sqrt(2))*cos(1/sqrt(2))

2. Prove that the integral between (+/-) infinity of

sin(pi(x))/(x^3-1) dx = (pi/3)(sqrt(3)*exp(-sqrt(3)*pi/2)-1)

I know an indentation is needed in the contour but would like some more help if possible.

Thank you in advance for helping me with these, 10 points to a good answer.

1 Answer

Relevance
  • kb
    Lv 7
    9 years ago
    Favourite answer

    1) Fix R > 1, and consider the semicircular contour C consisting of [-R, R] and Γ, the upper semicircle with radius R centered at the origin.

    So, ∫c z^3 e^(iz) dz/(z^4 + 1) = ∫(-R to R) x^3 e^(ix) dx/(x^4 + 1) + ∫Γ z^3 e^(iz) dz/(z^4 + 1).

    ---

    Note that f(z) = z^3 e^(iz)/(z^4 + 1) has simple poles when z^4 + 1 = 0.

    ==> z = e^(πi(1+2k)/4), with k = 0, 1 (k = 2, 3 are outside C).

    Residues (for k = 0, 1):

    lim(z→e^(πi(1+2k)/4)) (z - e^(πi(1+2k)/4)) * z^3 e^(iz)/(z^4 + 1)

    = lim(z→e^(πi(1+2k)/4)) z^3 e^(iz) * lim(z→e^(πi(1+2k)/4)) (z - e^(πi(1+2k)/4))/(z^4 + 1)

    = lim(z→e^(πi(1+2k)/4)) z^3 e^(iz) * lim(z→e^(πi(1+2k)/4)) 1/(4z^3)

    = e^(3πi(1+2k)/4)) e^(ie^(πi(1+2k)/4)) * 1/(4e^(3πi(1+2k)/4))

    = (1/4) e^(ie^(πi(1+2k)/4)).

    By the Residue Theorem,

    ∫c z^3 e^(iz) dz/(z^4 + 1)

    = 2πi [(1/4) e^(ie^((1+0)πi/4)) + (1/4) e^(ie^(πi(1+2)/4))]

    = (πi/2) [e^(-1/√2 + i/√2)) + e^(-1/√2 - i/√2))]

    = (πi/2) e^(-1/√2) [e^(i/√2) + e^(-i/√2)]

    = πi e^(-1/√2) cos(1/√2).

    ------

    Next, parameterizing Γ via z = Re^(it) for t in [0, π] yields

    |∫Γ z^3 e^(iz) dz/(z^4 + 1)|

    = |∫(t = 0 to π) R^3 e^(3it) e^(iRe^(it)) * iRe^(it) dt / (R^4 e^(4it) + 1)|

    ≤ ∫(t = 0 to π) |R^3 e^(3it) e^(iRe^(it)) * iRe^(it) dt / (R^4 e^(4it) + 1)|

    ≤ ∫(t = 0 to π) R^4 |e^(iRe^(it))| dt / (R^4 - 1), since R > 1

    = ∫(t = 0 to π) R^4 |e^(R(-sin t + i cos t))| dt / (R^4 - 1)

    = (R^4/(R^4 - 1)) * ∫(t = 0 to π) e^(-R sin t) dt

    < (R^4/(R^4 - 1)) * (π/R), by Jordan's Inequality

    → 0, as R→∞.

    -----------

    So, as R→∞

    πi e^(-1/√2) cos(1/√2) = ∫(-∞ to ∞) x^3 e^(ix) dx/(x^4 + 1) + 0

    ==> πi e^(-1/√2) cos(1/√2) = ∫(-∞ to ∞) x^3 (cos x + i sin x) dx/(x^4 + 1)

    ==> π e^(-1/√2) cos(1/√2) = ∫(-∞ to ∞) x^3 sin x dx/(x^4 + 1), equating imag. parts

    ==> ∫(0 to ∞) x^3 sin x dx/(x^4 + 1) = (π/2) e^(-1/√2) cos(1/√2), since integrand is even.

    ----------------------------

    2) f(z) = e^(πiz) /(z^3 - 1) has a singularity at z = 1, which is on the real axis.

    Fix R > 1, and consider the semicircular contour C consisting of [-R, 1 - ε] , Cε (the semicircular contour clockwise with radius ε centered at 0), [1 + ε, R] and Γ (the upper semicircle with radius R centered at the origin).

    So, ∫c e^(πiz) dz/(z^3 - 1) = ∫(-R to 1-ε) e^(πix) dx/(x^3 - 1) + ∫Cε e^(πiz) dz/(z^3 - 1)

    + ∫(1+ε to R) e^(πix) dx/(x^3 - 1) + ∫Γ e^(πiz) dz/(z^3 - 1).

    ---

    The only singularity of f(z) = e^(πiz)/(z^3 - 1) inside C is when z = e^(2πi/3), the cube root of unity above the real axis, which yields residue

    lim(z→e^(2πi/3)) (z - e^(2πi/3)) * e^(πiz)/(z^3 - 1)

    = lim(z→e^(2πi/3)) e^(πiz) * lim(z→e^(2πi/3)) (z - e^(2πi/3))/(z^3 - 1)

    = lim(z→e^(2πi/3)) e^(πiz) * lim(z→e^(2πi/3)) 1/(3z^2), by L'Hopital's Rule

    = e^(πi e^(2πi/3)) * 1/(3e^(4πi/3))

    = e^(-πi/2 - π√3/2)) * (1/3) * e^(2πi/3)

    = (-i/3) e^(-π√3/2) (-1/2 + i√3/2).

    So, the Residue Theorem yields

    ∫c e^(πiz) dz/(z^3 - 1) = 2πi * (-i/3) e^(-π√3/2) (-1/2 + i√3/2) = (π/3) e^(-π√3/2) (-1 + i√3).

    ------

    Next, parameterizing Γ via z = Re^(it) for t in [0, π] yields

    |∫Γ e^(πiz) dz/(z^3 - 1)|

    = |∫(t = 0 to π) e^(πiRe^(it)) * iRe^(it) dt/(R^3 e^(3it) - 1)|

    ≤ ∫(t = 0 to π) |e^(πiRe^(it))| * R dt / (R^3 - 1), since R > 1

    = ∫(t = 0 to π) e^(-πR sin t) * R dt / (R^3 - 1)

    < (R/(R^3 - 1)) * ∫(t = 0 to π) e^0 dt, since sin t > 0 on (0, π)

    = πR/(R^3 - 1)

    → 0, as R→∞.

    -------

    Next, parameterizing Cε via z = 1 + εe^(it) for t in [0, π] (with opposite orientation) yields

    ∫Cε e^(πiz) dz/(z^3 - 1)

    = - ∫(t = 0 to π) e^(πi(1 + εe^(it))) * iεe^(it) dt / [(1 + εe^(it))^3 - 1)]

    = - ∫(t = 0 to π) e^(πi(1 + εe^(it))) * iεe^(it) dt / [ε^3 e^(3it) + 3ε^2 e^(2it) + 3εe^(it)]

    = - ∫(t = 0 to π) e^(πi(1 + εe^(it))) * i dt / [ε^2 e^(2it) + 3ε e^(it) + 3]

    Letting ε→0+, we obtain

    - ∫(t = 0 to π) e^(πi) * i dt / (0 + 3) = -πi e^(πi)/3 = πi/3.

    ----------------

    So, letting R→∞ and ε→0+ yields

    (π/3) e^(-π√3/2) (-1 + i√3) = ∫(-∞ to 1) e^(πix) dx/(x^3 - 1) + πi/3 + ∫(1 to ∞) e^(πix) dx/(x^3 - 1) + 0

    ==> (π/3) e^(-π√3/2) (-1 + i√3) - πi/3 = ∫(-∞ to ∞) e^(πix) dx/(x^3 - 1).

    Equating imaginary parts yields

    ∫(-∞ to ∞) sin(πx) dx/(x^3 - 1) = (π/3) [√3 e^(-π√3/2) - 1].

    --------------------------------------------------------

    I hope this helps!

Still have questions? Get answers by asking now.